

JJllV^l-'^OiJl-l IJ-iLJ

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Form Approved
OMB No 0704-0188

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED 1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

distribution is unlimited
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a, NAME OF PERFORMING ORGANIZATION
Electrical and Computer Eng. Dept.

Naval Postgraduate School

6b. OFFICE SYMBOL
(if applicable)

EC

7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO

WORK UNIT
ACCESSION NC

1

1

. TITLE (Include Security Classification)

Computer Simulation Studies Of Two-Dimensional Beamforming For Linear Arrays
Using A Parallel Computer System (U)

UEFTCALAU
homass Sullivlvan

13a. TYPE QFREPORT
Master sThelesis

13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day)

December 1992
15. PAGE COUNT

77
16. supplementary notation The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the United States Governement.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Parallel Computers, Linear Arrays, Beamforming, Array Signal Processing
FIELD GROUP SUB-GROUP

1 9. ABSTRACT (Continue on reverse if necessary and identify by block number)

Computer simulation results of a parallel system conducting beamforming for a linear

hydrophone array are presented. These studies were performed to determine the best mapping and

partitioning of a sequential beamformer program onto a parallel system. Different partition

designs and programming methodologies were examined, as well as latencies caused by inter-pro-

cessor communications. Results of these simulation studies demonstrate that linear scalability in

performance is possible by programming with host-node methodology and utilizing efficient

inter-processor communications.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

fj UNCLASSIFIED/UNLIMITED
|~J

SAME AS RPT.
[~J

DTIC USERS
21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

a
a, NAME OFRESPONSIBLE INDIVIDUAL
hin-Hwa Lee

22b. TELEPHONEj7nc/ixte Area Code)

(408)656-2190
22
t£/¥2

CE SYMBOL

DO FORM 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

Approved for public release; distribution is unlimited

COMPUTER SIMULATION STUDIES OF
TWO-DIMENSIONAL BEAMFORMING FOR UNEAR ARRA YS

USING A PARALLEL COMPUTER SYSTEM

by

Daniel Thomas Sullivan

Lieutenant, United States Navy

B.S.E.E., University Of Illinois, 1984

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1992

ABSTRACT

Computer simulation results of a parallel system conducting beamforming for a linear

hydrophone array are presented. These studies were performed to determine the best

mapping and partitioning of a sequential beamformer program onto a parallel system.

Different partition designs and programming methodologies were examined, as well as

latencies caused by inter-processor communications. Results of these simulation studies

demonstrate that linear scalability in performance is possible by programming with host-

node methodology and utilizing efficient inter-processor communications.

HI

TABLE OF CONTENTS

I. INTRODUCTION 1

II. THEORY OF TWO-DIMENSIONAL BEAMFORMING 4

A. LINEAR ARRAY FUNDAMENTALS 4

B. GENERAL 3-D FORMULATION 7

C. BEAMSTEERING 9

IE. THEORY OF MESSAGE BASED PARALLEL COMPUTERS 13

A. MULTICOMPUTERS 13

B. PARALLEL PROGRAMMING ENVIRONMENT: EXPRESS 14

1. Host-Node Programming Methodology 14

a. Message Shuffle 15

b. Broadcast 15

2. Loosely Synchronous Programming Model 15

IV. LOOSELY SYNCHRONOUS SINGLE PROGRAM MULTIPLE
DATA (SPMD) COMMUNICATION METHOD FOR PARTITIONING .17

V. HOST-NODE PARTITION WITHOUT MESSAGE SHUFFLE 26

VI. HOST-NODE PARTITION WITH MESSAGE SHUFFLE 34

VE. HOST-NODE PARTITION WITH BROADCAST 41

VIE. HOST-NODE FREQUENCY PARTITION WITH MESSAGE SHUFFLE . 48

IX. TIMING MEASUREMENTS 55

A. INTER-PROCESSOR COMMUNICATIONS 55

B. FFT COMPUTATION TIME 56

X. CONCLUSION 64

LIST OF REFERENCES 68

INITIAL DISTRIBUTION LIST 69

IV

ACKNOWLEDGEMENTS

I would like to thank Mr. Steve Howell of Naval Surface Weapons Center and Ms.

Betts Wald of the Office Of Naval Technology for the Complex Systems Engineering/

Office Of Naval Technology (CSE/ONT) block funds that provided the hardware and

software necessary to conduct this research.

This research could not have been completed without the guidance and support of my

advisor, Professor Chin-Hwa Lee. Professor Lee would willingly take time from his very

busy schedule to discuss problems I had with the work. He made learning interesting and

fun. My appreciation also goes to Professor Lawrence Ziomek for his excellent

unpublished acoustics book and for taking the time and effort necessary to be my second

reader.

I am grateful to Professor Lee's research assistant Dan Zulaica for his help in learning

the Express software.

Finally, I am most grateful for the love and support from my family. I thank my brother

Douglas for his insights of digital signal processing and Fortran programming. I am

thankful to my grandmother Mrs. Francis R. Fischer for instilling in me the values of hard

work and integrity.

I. INTRODUCTION

This thesis investigates the application of linear array beamforming to a parallel

computer system. Parallel processing here means execution of several processing tasks

concurrently rather than one after the other (sequential or serial processing), as occurs in

conventional computers. This thesis examines the use of general-purpose workstations

working in cooperation. The objective is to speed up the beamforming operations.

Parallel processing allows several processors to achieve the computing power of a

supercomputer. Parallel processing provides an attractive solution if an application requires

a prohibitively high throughput or the required supercomputer has yet to be invented. Now

parallel processing can provide a feasible and economical solution. A parallel computer

system's overall performance is dependent upon the computing power of the individual

processors and the latency of the inter-processor communication channels. Both

computational and communication activities determine the performance of a parallel

computer system.

Sequential programs are converted for use in a parallel system by mapping sections of

the sequential program to the processors in the system. The programmer must consider the

computational requirements of a section of a program and consider what communications

are required to send data to and from the processor executing the code. Performance

improvement of a parallel program is accomplished by repartitioning the sequential

program onto the parallel system until satisfactory performance is achieved.

Automatic parallelization of sequential software does not exist. Therefore, writing

parallel programs is more challenging than writing sequential programs. Due to explicit

handling of communications, programming parallel computers is still more difficult than

programming a sequential computer. [Ref. l:p. 134]

This thesis maps a frequency-domain beamformer algorithm onto a parallel computer

system. The input signal was modeled as a broadband sound source. Several partitioning

methods were implemented with varying results. In this parallel system, the Ethernet

provided inter-processor communications. As a result, the Ethernet added latencies to the

total execution time. Ethernet delays not only affected inter-processor communications but

also idle times. For fair comparison in this study, identical input data was used for all

simulations of different partition methods.

Chapter II builds the foundation of linear array beamforming. Beamforming serves as

the computational load for the processors. General three-dimensional theory is presented

and the linear array equations are derived. Chapter III describes parallel computer systems,

and the advantages they offer over sequential computers. Two distinct parallel

programming methodologies are used in this study: Loosely Synchronous and Host-Node.

Chapter IV describes the Loosely Synchronous experiments. Loosely Synchronous

programming offers ease and flexibility at the expense of performance.

In Chapter V, the partitioning is done according to a Host-Node methodology. The

performance is improved over the previous methodology; however, it is apparent that

carefully chosen partitions are needed to yield better scalability. Chapter VI presents a more

realistic beamformer partition which did improve overall performance. The partition in

Chapter VI also demonstrated how inter-processor communications can increase

communication and idle time. Inter-processor communication can degrade overall system

performance if it is not handled properly.

Based on the results obtained in Chapter VI, Chapter VII presents a host-node partition

that uses an efficient broadcast mechanism to reduce communication and idle times. This

method is successful in improving scalability for up to eight nodes. Chapter VIII presents

an entirely new method of partitioning. Instead of having each node dedicated to

beamsteering a sector of angles, now each node processes a separate frequency spectrum

for all angles. This improved overall performance since less data needed to be transmitted

in the network. Also, each node performs fewer floating point operations.

Chapter IX measures the FFT and inter-processor communication times. A quadratic

model is developed to model and predict the system performance with larger FFT

computations. Finally, all partition results are compared in the conclusion.

II. THEORY OF TWO-DIMENSIONAL BEAMFORMEVG

In this chapter the theoretical background of beamforming is introduced. The purpose

is to describe the tasks carried out in the parallel computer system.

A. LINEAR ARRAY FUNDAMENTALS

A signal received at a linear sensor array is usually contaminated by noise in amplitude

and phase. In the ocean, in addition to the signal generated by the target, there are signals

present due to reverberations from the ocean surface or sea layers. Worst yet, signals from

multiple sources may combine in a coherent or incoherent manner. Signals can undergo

reflection causing the received source signal to be amplitude and phase modulated.

The source produces a target signal that is transmitted through the ocean. The target

signal is combined with self noise, such as vibrating machinery, slamming hatches, and

other sounds. These self noises are random in nature. In addition to the source noise, each

hydrophone element has its own sensor noise. The target self noise and hydrophone

element noise can be modeled (at least over short times) as Gaussian stationary processes.

The additive noise components are uncorrelated with the target signal. [Ref. 2:p. 81

All underwater source signals have an amplitude and phase. In a physical system, the

signals are real. The representation of a source signal with a phase modulated carrier and

constant random phase 6 is given by

u
r
(t) = JP cos (a

o
t + $(t) + 6) (2.1)

The complex representation of Eq. 2.1 is

7 (© / + *(/) +0)
u(t) = JPe ° (2.2)

The phasor part of Eq. 2.2 is

f,(0 = ,

/><-"*<" +6)
(2.3)

Equation 2.3 is the baseband complex envelope of the real signal u
r
(t) .It represents

the information carrying part of the source signal. For simplicity, the carrier frequency co

of the source signal can be neglected in this model. The source signal is usually modeled

as originating in the far-field of the array. It is assumed that the signal propagates through

an isospeed medium. Since the medium introduces propagation delays, the signal at any

element can be modeled as the time advanced or time delayed version of the signal received

at the reference element.

Signals characterized by a single frequency are designated as narrowband signals.

Signals with multiple frequencies are known as broadband sources. In this simulation, each

target has a base frequency plus three harmonics. The power of the first harmonic is 6 dB

less than the power of the base frequency. The second harmonic's power is 12 dB less than

the base frequency power. Lastly, the third harmonic's power is 18 dB below the base

frequency power. Consequently, each target in the model transmits a broadband source

signal.

Figure 2.1 illustrates a target in the array's far-field, radiating a signal u (t) that is

propagating through an isospeed medium. The right element receives signal u(t) which is a

time delayed version of the target's signal u (t). Let d be the distance between the right and

left elements in the array. Further, let v(t) be the signal received by the left element. The

wavefront will arrive at the second sensor after propagating a distance of dcos^. Let c

represent the propagation speed. The time delay between the left and right array element is

t, given by

x = (2.4)
c

The signal received by the second sensor is

v(r) = u(t-x) (2.5)

Second
Sensor

Element

dcos^

Reference

Element

Figure 2.1 Linear hydrophone array.

If the carrier frequency co is large compared to the bandwidth of the modulating signal

ty(t), then the modulating signal can be considered quasi-static during time intervals on the

order of x. In this case, Eq. 2.2 reduces to

u(t) = JPe ° (2.6)

Therefore,

v(t) = u (t) exp
-/co dcosm

(2.7)

The time delay corresponds to a phase delay of the signal received by the reference element.

The interelement spacing and the angle of arrival determine the phase delay. The phase

delay is independent of time. [Ref. 2:pp. 11-12]

To avoid aliasing in the spatial domain, the interelement distance d must be equal to

or less than half of the minimum wavelength of the source signal, that is,

di
XJ™ (2.8)

where ^MIN ls ^e minimum wavelength associated with the highest frequency component

of the source spectrum. [Ref. 3:pp. 574-575]

B. GENERAL 3-D FORMULATION

In sonar applications, it is desired to classify a target by the frequency spectrum of its

radiated field and to estimate the direction of arrival of the target signal. One way to

accomplish this goal is to use the Fast Fourier Transform (FFT) algorithm to determine the

spectral content, then maximize the array gain for each possible angle of arrival. The one-

dimensional FFT approach is used in this simulation to allow for future adaptive

beamsteering techniques. The following is a general three-dimensional formulation

following the approach used in Ref. 3, pp. 626-628. The specific line array equations will

be derived from the three-dimensional results.

Figure 2.2 shows a general plane wave traveling through an isospeed medium in the

far-field of an array. The target signal is g(t). The target is located in the hQ direction.

Therefore, its signal propagates in the -n direction where

is a unit vector where

and

K = uo* +v + w
o
2 (29)

un = sin6 cos^ , (2.10)
O O

vn = sin6 sin¥ , (2.11)

u> = cos6 (2.12)

are dimensionless direction cosines with respect to the X, Y, and Z axes. The position

vector to a field point is given by r, where

r = xx + yy + zz (2.13)

Figure 2.2 Three-dimensional plane wave case.

The array hydrophones are modeled as omnidirectional receivers having a linear gain.

The acoustic field as a function of time and position is modeled by

nT
y(t,r) = g(t*^—) (2.14)

To determine the spectral content of v (t, r) , the time-domain Fourier Transform is

taken of Equation 2.14, that is,

Y(f,r) =F
t
{y(t,r)} (2.15)

Y(f,r) = F
t ^(rT^)J =G(f)exp*j2nf(

r^*- [
-) (2.16)

Substituting Equations 2.9 and 2.13 into Equation 2.16 gives the complex frequency

spectrum of the target plane wave

Y (f, x, v, z) = G (f) exp (Tj2nfxox) exp (?j2nfyoy) exp (*j2nf20z) (2.17)

Variables f t f , and / are the spatial frequencies in the X, Y, and Z directions in units

of cycles per meter, where

fxo = X '
(2 - 18)

fyo = X '
(219)

and

w
o

fzo = X • (220)

Since the linear array of hydrophones is aligned along the X axis and if it is assumed

that the target lies in the XY plane (0O=9O°), then Equation 2.17 simplifies to

Y(f,x) =G(f)exp(?j2nfxox) (2.21)

Y(f,x) = G{f)exP m:j2Kf
C0^x) (2.22)

Equation 2.22 is the frequency-domain representation of the signal.

C. BEAMFORMING

To improve spatial resolution, the array output is amplitude weighted by Dolph-

Chebyshev weights. Dolph-Chebyshev weighting offers the advantage of producing the

narrowest beamwidth possible for a fixed ratio of main lobe to sidelobe level. The

disadvantage of the Dolph-Chebyshev method is that there is a constant main lobe to side

lobe ratio. There are other methods to improve spatial resolution. One physical means is to

increase the array aperture. With a physical design of a linear array limited by cost, the

Dolph-Chebyshev amplitude weights provide an inexpensive method to improve spatial

resolution. [Ref. 3:p. 558]

After the array outputs are amplitude weighted, the Fast Fourier Transform (FFT) is

taken of the time samples from each element to determine the spectral content of the

acoustic field. To find the angle of arrival of the target signal, linear phase weighting is

applied to the FFT outputs from each sensor to steer the beam in a given direction. The

array outputs are then summed. Since the noise is incoherent and uncorrelated with respect

to the signal, the noise signals are canceled. The resulting sum is the frequency content of

the acoustic field along a beamsteered direction.

If the spectral output of M elements are

cos^
Y

x {ft
x

x
) =G(f)exp(*j2nf-v^x l

)
i2 -2^

cos 1^
Y
2 (f,x2) = G(f)exp(Tj2nf—^x2) (2.24)

: :

cos 1?
YmV< xm) = G(f)expW2nf—^xM) , (2.25)

then to steer the array to direction ¥, the following linear phase weights (steering vector)

would be needed:

W^xJ = expitjlnf^-xj (2.26)

W
2 (f,x2) = exp(±j2nf

C
°^x

2) (2.27)

: S
WM (f,xM) = exp(±j2nf°^-xM) (2.28)

where *P is the beam tilt angle. The array output for frequency/and angle 4* is

I'ou.W.*) = K
1
H'

1
+ K

2
W

2
+ ... + YMWM (2.29)

10

In this simulation, the linear array detects targets with frequencies from zero to 5 12 Hz

and with bearing angles from one to 180 degrees with one degree resolution. This

hypothetical beamformer is used as a computational load for a parallel computer system. In

the next chapter, a parallel processing system with message passing is introduced. Figure

2.3 illustrates the overall beamformer process.

Hydrophones

Sample

Hydrophone
Amplitude Weight ID EFT Wj

Beamsteering

Sample _ Amp^^ Weight
Hydrophone

1DFFT
Y2 W2

Beamsteering

D^
Sample

Hydrophone
_ Amplitude Weight 1DFFT

YM
Beamsteering

>Y(f, v
I
/
)

Figure 2.3 Overall beamforming diagram.

Figure 2.4 shows the beamformer output for one target source at bearing 90 degrees

with a base frequency of 100 Hz and harmonics at 200 Hz, 300 Hz, and 400 Hz. The target's

main source signal is seen as a peak at 90 degrees and 100 Hz.

11

Beam former Magnitude Vs Bearing And Frequency

500

bearing (degrees

Figure 2.4 Beamformer output for one target source at broadside.

12

HI. THEORY OF MESSAGE BASED PARALLEL COMPUTERS

A. MULTICOMPUTERS

A multiple instruction multiple data (MIMD) parallel computer consists of several

independent computers connected in a network. Each of these independent computers acts

as a node in the MIMD machine. Each node has its own private memory. Since each node

can only access its own memory, global data must be transmitted via a communications

network. As a result, MIMD systems are also called message-passing architectures. [Ref.

l:pp. 133-134]

A multicomputer' s performance is affected by both the speed of the node computers

and that of the communication network. The inherent characteristics of a numerical

algorithm influences computation time. Communication speed is determined by inherent

latencies and the network topology. Simply increasing the number of processors in a

computer may not improve the speed because the node processors may be idle while

waiting for the communication network to deliver data.

Compared to a second kind of system, shared memory machines, multicomputers with

message passing offer increased scalability. The performance of shared memory machines

is limited by bus saturation [Ref. l:p. 116]. However, MIMD with message passing can

improve computer power by increasing the number of processors. Linear scalability is an

ideal goal. Scalability cannot be improved by only adding more processors to a

multicomputer. To improve scalability, the programmer must partition the parallel program

based on the processor computational power and communications bandwidth. [Ref. l:p.

134]

Besides computation and communication time, network topology also influences the

scalability. Early MIMD designers had to trade off the path lengths between nodes and the

13

number of physical connections at each node. Communications latency was proportional to

the longest path between nodes in a certain network topology. [Ref. l:p. 134]

B. PARALLEL PROGRAMMING ENVIRONMENT: EXPRESS

Express is a parallel programming environment used to create a multicomputer system

using a network of independent processors. One processor is used as a host and the others

as nodes. The Ethernet in a network of workstations provides communications between the

processors. Express works in conjunction with the Unix operating system. While Unix is

the operating system for each workstation, Express functions as a distributed operating

system for the processors that together form a parallel system. The Express kernel provides

the basic parallel computer functions for communications, sharing data, reading files,

graphics, debugging, and performance analysis. Express performs these functions in a

transparent manner. Express offers two basic programming methodologies: Host-Node and

Loosely Synchronous [Ref. 4:p. 7]. In Loosely Synchronous methodology, only a single

program is necessary to run all of the parallel system nodes. It is referred to as the Single

Program Multiple Data system (SPMD). In the Host-Node methodology, each node of the

network runs a different program.

1. Host-Node Programming Methodology

In the Host-Node Methodology, a host program runs on the host processor. One

or more node programs run on the remaining node processors to implement the

parallelization. Only the host program has access to input or output functions such as

reading files and displaying data. All communications between the host and node

processors are handled by message passing. Input data and computational results in the

experiments are sent by two methods: Message Shuffle or Broadcast. [Ref. 4:p. 78]

14

a. Message Shuffle

The first method for inter-node and host-node communications is message

shuffle. The host or node program transmits one message to a receiving node program in

this scheme. Execution of the program at the receiver is blocked until the message is

received. The message can be any data type. To ensure transmission integrity, the

programmer must assign an identifier to the message. A node program waiting to receive a

message will be blocked until a message arrives with the correct number of bytes and

identifier. [Ref. 4:p. 89]

b. Broadcast

Besides message shuffle, a host or node program may communicate by

broadcasting its message to several other nodes. The broadcast function blocks in the

receiving node program until a message arrives with the correct number of bytes and

identifier. The sender identifies the message recipients by defining a node list for a number

of recipients. The node list is an array of node designators. [Ref. 5:p. 158]

2. Loosely Synchronous Programming Model

The Loosely Synchronous Programming Model was designed to make parallel

programming easier. It is referred to as the SPMD methodology. The Host-Node

Programming methodology requires separate host and node programs to execute on the

processors. In the Loosely Synchronous Model (SPMD), the same program runs on all

processors. One processor is designated as the host. The host acts as a file server; it serves

node requests for operating system services. Loosely Synchronous programming offers the

easiest transition of sequential programs to parallel programs. Loosely Synchronous

programming reduces a significant amount of duplication of effort in writing parallel

programs. Besides saving program development time, the Loosely Synchronous

15

Programming Model allows increased portability between different parallel computer

architectures [Ref. 4:p. 26]. However, its scalability in performance is very poor.

In this thesis the objective is to explore several partition and mapping methods for

beamforming to run on parallel systems. Each of the following chapters presents a partition

method and its measured performance on the parallel workstations.

16

IV. LOOSELY SYNCHRONOUS SINGLE PROGRAM MULTIPLE DATA
(SPMD) METHOD FOR PARTITIONING

In the Express environment the Loosely Synchronous Communication Method is

called the Cubix Model of Programming. The Cubix Model of Programming is an output

partition method. The host services all operating system requests from the nodes. The nodes

execute the same program in a loosely synchronous manner. For these reasons, the Cubix

Model of Programming is also referred to as the Single Program Multiple Data (SPMD)

Method or Loosely Synchronous Communication Method for Partitioning [Ref. 6:p. 8].

Figure 4.1 illustrates the basic tasks of the beamformer program. For fair comparison

among different partitioning simulations, all experiments were conducted with 96

hydrophone sensors. The target bearing was 90 degrees with a power of two watts. When

the Cubix beamformer program begins execution, the nodes are in loosely synchronous

mode. After parameter initialization, the host opens a file to store the beamformer results.

Even though all nodes are running the same program synchronously, only the host node can

access the operating system for services. After the data file is opened, the host program

executes subroutine INDATA. Subroutine INDATA asks the user to specify the number of

sources, the sensors, the direction, and the power of each source. If multiple sources are

specified by the user, the user needs to input the amount of correlation between sources.

After the host program receives the input data from the user, the host program

automatically sends the input data to all other nodes. Subroutine TRAN normalizes the

correlation coefficients between sources. Next, the array elements are sampled. Subroutine

CHEBWIN calculates the Dolph-Chebyshev amplitude weights for a main lobe to side lobe

ratio of -80 dB. The array outputs are amplitude weighted and the one dimensional Fast

Fourier Transform (FFT) is taken for the output of each array element.

17

Up to this point, the Loosely Synchronous beamformer program operates as a

sequential beamformer. Parallelization of the beamformer operations occur in the next step

where the nodes operate asynchronously. A sequential beamformer program would

calculate for the sweep bearing angle ¥ from one degree to 180 degrees. The parallel

computer system can save time by assigning each node a sector of sweep angles, and then

writing the beamformer output data back to the host file in the proper sequence.

After each node calculates the spectral component at frequency / and angle T, the

beamformer output is written to the data file. In the Cubix Programming Model, the input/

output is buffered. Data is stored in internal data structures. At program completion, the

operating system flushes the data from the buffers in large packets to improve efficiency.

Express allows the user to empty the data buffers with function KFLUSH [Ref. 5:p. 109].

When the Express library call KFLUSH is executed, all buffers are written to the host data

file. Figure 4.2 illustrates how eight Sun workstations form a parallel computer system. One

of the workstations functions as the Host and Node 0. The remaining workstations serve as

Nodes 1 to 7. Ethernet provides the communications path between the host and nodes.

Express also provides a communications profiling utility called CTOOL. CTOOL

assists developers because it details the amount of time each node has spent on

computation, input/output, communications, system calls, and idle time. Table I details the

profiling results of an eight-node Loosely Synchronous beamformer. In the eight-node

Loosely Synchronized Communication Method, most of the time is used by input/output

operations. The time spent by each node in each operation is illustrated in Figure 4.3.

18

Subroutine INDATA
User Input

Simulation Parameters

I
Subroutine TRAN
Normalizes Source

Correlation Coefficients

i
Create Source

Signals

I
Sample Hydrophones

I
Subroutine CHEBWIN
Amplitude Weight

Hydrophone Outputs

i
1DFFT

I
Beamsteer Sector

i
KFLUSH

i
Write Beamformer

Output Data to File

Figure 4.1 Loosely Synchronous beamformer program.

19

Host and Node

Node 1

Node 3

Node 7

Node 5

Figure 4.2 Fully connected eight node parallel computer system.

20

TABLE I: PROFILING DATA FOR LOOSELY SYNCHRONIZED COMMUNICATION
METHOD OF PARTITIONING

Node

Calculation

Time

(msec)

Node

Communication

Time

(msec)

Input/

Output

(msec)

System

Calls

(msec)

Idle

Time

(msec)

NodeO 17434.66 0.00 42375.99 3616.57 191.00

Node 1 20509.46 0.00 40061.31 3005.16 50.33

Node 2 17913.60 0.00 42390.33 3151.93 168.57

Node 3 20563.21 0.00 41386.19 1639.65 47.03

Node 4 15370.41 0.00 44845.08 3302.68 94.20

Node 5 16217.64 0.00 44023.83 3325.08 52.88

Node 6 16862.01 0.00 43460.74 3055.21 80.41

Node 7 19231.14 0.00 41002.81 3175.71 37.60

Average 18012.77 0.00 42443.29 3033.99 90.26

Percent

of Total
28.33% 0.00% 66.76% 4.77% 0.14%

In order to investigate the effect of incorporating more nodes in the parallel computer

system, further experiments were conducted with a total of one, two, four, and six nodes

used for each experiment. One measure of performance of a parallel system is speedup

[Ref. 7:pp.8-9]. Speedup tells how much faster the beamformer program runs in a multi-

node parallel computer than with only a host and a single node.

Processing time for entire task without using multiple processors

Processing time for entire task using a single processor

21

Table II shows the average times of different activities for each experiment of beamformer

programs with different total numbers of nodes in the system. Table III shows the total

execution time and speedup when more nodes are used in the multi-node beamformer

program.

Node Utilization

1

1 m\ wi< ym wd m& wm \mrwm

0.8 --

3 0.6

C
o

Ho.4

0.2 --

S

k +
NodeO Nodel Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Processor Number

Calculation

System calls

Communications

Idle

I/O

Figure 4.3 Node utilization for Loosely Synchronous Communication Method For

Partitionins.

22

TABLE II: PROFILING DATA FOR LOOSELY SYNCHRONIZED
COMMUNICATION METHOD FOR PARTITIONING FOR DIFFERENT NUMBER

OF PROCESSORS

Number of

Processors

Calculation

Time

(msec)/

Percent Of

Total

Node

Communication

Time

(msec)/

Percent Of Total

Input/

Output

(msec)/

Percent

Of Total

System

Calls

(msec)

Percent

Of Total

Idle

Time

(msec)/

Percent

Of Total

One 87665.20

86.83%

0.00

0%
12954.15

12.83%

318.43

0.32%

25.52

0.02%

Two 47353.32

64.61%

0.00

0%
24340.42

33.21%

1507.96

2.06%

93.01

0.12%

Four 26008.40

46.86%

0.00

0%
27899.58

50.27%

1524.44

2.75%

65.20

0.12%

Six 19882.07

32.66%

0.00

0%
37816.80

62.13%

2969.35

4.88%

203.72

0.33%

Eight 18012.77

28.33%

0.00

0%
42443.30

66.76%

3034.00

4.77%

90.25

0.14%

TABLE HI: TOTAL PROCESSOR TIME AND SPEEDUP FOR LOOSELY
SYNCHRONIZED COMMUNICATION METHOD FOR PARTITIONING

Number of

Processors

Average Total

Processor Time

(msec)

Speedup

One 100963.30 1.00

Two 73294.70 1.3775

Four 55497.60 1.82

Six 60871.90 1.66

Eight 63580.30 1.59

23

Figures 4.4 and 4.5 show plots of the data in Table III. As seen in Figure 4.4, total

processing time decreased in the two and four processor programs compared to the single

node beamformer. However, performance is degraded when the parallel beamforming is

done on six and eight processors. This means that the performance deteriorates even if more

nodes are used in the system. This is due to the increased input/output communication time

used for each node.

110000

8 100000

£

| 90000

.= 80000
m
oo
D

| 70000

o 60000H

50000
2 4 6

Number of Processors

Figure 4.4 Total processing time versus number of processors.

The results shown here are not satisfactory. That is why other partition methods were

explored; these are described in the next several chapters.

24

12 4 6 8

Number of Processors

Figure 4.5 Speedup versus number of processors.

25

V. HOST-NODE PARTITION WITHOUT MESSAGE SHUFFLE

In Chapter IV it was demonstrated that the Loosely Synchronous Programming Model

achieved decreased total processing time in the two and four node configurations. The six

and eight node configurations experienced decreased performance. The Host-Node

Programming methodology offers better performance because the user has greater

flexibility in scheduling and partitioning the tasks. The Loosely Synchronous Programming

Model allows for easier parallel programming but does so at the expense of flexibility.

Partition Without Message Shuffle was the first partition method that used the Host-Node

Programming methodology.

In this methodology, the host program is different from the node programs. Here, the

program structure is similar to the Loosely Synchronous program. Each node executes its

own program. In the Loosely Synchronous Programming Model, host and node

communications were automatically facilitated via the Express programming environment.

However, with the Host-Node methodology, the programmer must manually implement

inter-processor communications. Express provides subroutines called KXWRIT and

KXREAD for this purpose. Both are used for direct message passing between processors.

Both host and node programs may use these system subroutines. KXWRIT sends a message

to the specified recipient. A message can be any form of data, from a simple integer to a

multidimensional array. The only limitation is that there must be sufficient buffer capacity

in the sending and receiving processor to accommodate the message. The recipient

processor receives the message by calling KXREAD. KXREAD will block the recipient's

program execution until the message arrives. [Ref. 5:p. 204]

Figure 5.1 is a block diagram of the host and node program structure. The host

program opens a data file and receives the user input data. If more than one acoustic source

is specified by the user, the correlation coefficients between the sources are normalized.

The host program sends the input data to each node. Each node program creates the source

26

signals, samples the hydrophones, and amplitude weights the array outputs. A one-

dimensional Fast Fourier Transform (FFT) is performed on the output from each sensor

element. Each processor handles a sector of bearing angles, which determines the

beamformer output. A node program cannot access the Unix operating system to write the

output to the data file. Each node program must use the Express point to point KXWRIT

procedure to transmit the beamformer output to the host program. Once the host receives

the beamformer data, the host program writes the results to the data file.

For fair comparison, the following set of input data was specified for all trials: one

source at 90 degrees bearing with two watts of power, base frequency of 100 Hz, and an

linear array consisting of 96 equally spaced sensors. Table IV shows the CTOOL profiling

data of the trial for an eight processor parallel system with Partition Without Message

Shuffle. Figure 5.2 illustrates the node utilization. Most of the processor time is consumed

by performing calculations or waiting in an idle state. After a node program completes its

calculations, it must wait to transmit the beamformer data back to the host. For the parallel

programs using the Host-Node Programming methodology, the node input/output and

system calls times are zero milliseconds. This is due to the Express restriction that only the

host program has access to the Unix operating system [Ref. 4:p. 78].

Table V presents profiling results of the Host-Node Partition Without Message Shuffle

in a parallel system of one, two, four, six, and eight processors. Table VI and Figure 5.4

display the speedup of each experiment. As the number of processors increases, the

calculation time decreases. However, the idle time also increases. As a result, speedup is

not a linear function of the number of processors. Figure 5.3 shows a plot of the system

processing time. Compared to the two node system, processing time increases in the four

node system because of the increase in idle time.

Partition Without Message Shuffle demonstrates that a parallel computer system using

the Host-Node Programming methodology has the potential to achieve better scalability,

i.e., a linear increase in speedup as the number of processors increase. A drawback of this

partition method however, is that it is not realistic. If a linear hydrophone array were being

27

processed by a parallel system, each node most likely would not handle all of the sensors.

Each node would process a group of sensors. Chapter VI presents a partition method that

is a realistic system simulation.

28

Nodel

Amplitude Weight

Hydrophone Outputs

Host

Subroutine INDATA
j

User Input

Simulation Parameters

v !

Subroutine TRAN
Normalizes Source

Correlation Coefficients :

ir

KXWRTT

Amplitude Weight

Hydrophone Outputs

Amplitude Weight

Hydrophone Outputs

Write Beamformer

Output Data to File

Node 4

Amplitude Weight

Hydrophone Outputs

Figure 5.1 Partition Without Message Shuffle program.

29

TABLE IV: PROFILING DATA FOR EIGHT NODE PARTITION WITHOUT
MESSAGE SHUFFLE

Node

Calculation

Time

(msec)

Node
Communication

Time

(msec)

Input/

Output

(msec)

System

Calls

(msec)

Idle

Time

(msec)

NodeO 17840.76 1007.50 0.00 0.00 18630.79

Node 1 17930.41 1029.03 0.00 0.00 18517.90

Node 2 36258.58 1205.04 0.00 0.00 23.76

Node 3 22702.70 1301.00 0.00 0.00 13454.23

Node 4 18078.65 1688.07 0.00 0.00 17712.95

Node 5 18560.72 1294.07 0.00 0.00 17599.93

Node 6 18903.14 1017.06 0.00 0.00 17558.41

Node 7 22185.56 989.45 0.00 0.00 14306.60

Average 21557.57 1191.40 0.00 0.00 14725.60

Percent

of Total
57.53% 3.18% 0% 0% 39.29%

30

TABLE V: PROFILING DATA FOR PARTITION WITHOUT MESSAGE SHUFFLE

Number of

Processors

Calculation

Time

(msec)/

Percent Of

Total

Node
Communication

Time

(msec)/

Percent Of Total

Input/

Output

(msec)/

Percent

Of Total

System

Calls

(msec)/

Percent

Of Total

Idle

Time

(msec)/

Percent

Of Total

One 110482.58

98.32%

1883.78

1.68%

0.00

0%
0.00

0%
12.55

0.012%

Two 56556.80

95.94%

1104.37

1.87%

0.00

0%
0.00

0%
1286.77

2.18%

Four 41167.08

62.27%

1244.63

1.88%

0.00

0%
0.00

0%
23703.06

35.85%

Six 27603.08

61.72%

612.78

1.37%

0.00

0%
0.00

0%
16509.16

36.91%

Eight 21557.57

57.53%

1191.40

3.18%

0.00

0%
0.00

0%
14725.60

39.29%

TABLE VI: TOTAL PROCESSING TIME AND SPEEDUP FOR PARTITION
WITHOUT MESSAGE SHUFFLE

Number of

Processors

Average Total

Processing Time

(msec)

Speedup

One 112375.58 1.00

Two 58947.93 1.91

Four 66114.78 1.70

Six 44725.02 2.51

Eight 37474.56 3.00

31

Node Utilization

c/3

1

0.8 I

!= 0.6 -

a
o

. p-

1

—
0.4 -

0.2 -

^.^.^

^ IE

TT

NodeO Node 2 Node 4 Node 6

Processor Number

Calculation

I/O

Idle

Communications

System calls

Figure 5.2 Node utilization for eight node Partition Without Message Shuffle method.

32

120000

'J

CO 100000

H 80000

c

8
60000

3
o

40000

20000
2 4 6

Number Of Processors

Figure 5.3 Total processing time versus number of processors.

2 4 6

Number Of Processors

Figure 5.4 Speedup versus number of processors.

33

VI. HOST-NODE PARTITION WITH MESSAGE SHUFFLE

The major disadvantage of the Host-Node Partition Without Message Shuffle is that it

is not a realistic system simulation. In an actual array system, each node processor would

not process all of the hydrophone data. Instead, a node processor would most likely process

only the data from a section of hydrophones. To steer the far-field beam pattern, each node

needs to send its hydrophone data to the other nodes. Once all nodes have all of the

hydrophone data, they can sweep their own sector of bearing angles and conduct the

beamforming calculations. The Host-Node Partition With Message Shuffle is an

implementation of these ideas.

Figure 6. 1 illustrates a four processor parallel structure of the new Host-Node Partition

With Message Shuffle. As before, subroutines ENDATA and TRAN receive the user input

and normalize the correlation coefficients between sources. As in the previous simulations,

the array consists of 96 sensors and the target source is at 90 degrees bearing, radiating its

signal with two watts of power. KXWRTT and KXREAD are used to transmit the message

data from the host program to each node program. Each node program creates the source

signal, then samples its respective group of hydrophones. For simplicity of illustration,

Figure 6.1 shows four nodes in a parallel computer system. The total number of sensors in

the array is 96. Therefore, to evenly balance the computing load, each node samples 24

sensors. Node samples Group (elements 1 through 24), Node 1 samples Group 1

(sensors 25 through 48), Node 2 samples Group 2 (elements 49 though 72), and Node 3 is

responsible for Group 3 (hydrophones 73 though 96).

Each node program performs signal processing on the outputs from its hydrophone

group. In order for a node program to steer the beam pattern, the node must have all of the

hydrophone output data. Each node transmits its hydrophone data to the other nodes using

the KXWRIT direct message-passing function. This is very time consuming since the node

programs are blocked from continuing their execution until all data has been exchanged.

34

Once all hydrophone data is exchanged among the nodes, each node steers its far-field

beam pattern according to its assigned sector of bearing angles. Finally, the beamformer

output is sent to the host program to be written to a data file.

Table VII and Figure 6.2 show the node utilization for the Host-Node Partition With

Message Shuffle of an eight node parallel system. In comparison to Partition Without

Message Shuffle, Message Shuffle reduces idle time. Most of the time the nodes are

performing calculations or communicating. Tables VIII and IX demonstrate that Partition

With Message Shuffle had achieved decreasing processing time for two, four, and six

processors. The eight processor run had less speedup than the six processor run. This is due

to the increased communications between nodes in the eight node run which caused more

processor idle time.

Figures 6.3 and 6.4 display the plots of the total processing time and the speedup using

different number of processors in the runs. It is apparent that a new partitioning or

communication scheme must be developed to improve the scalability beyond a six-

processor parallel system.

35

NodeO

Sample Hydrophone

Group

Amplitude Weight

Hydrophone Outputs

Assemble All

Hydrophone Outputs

For Beamsteering

Beamsteer Sector

I
KXWRfl

Host

Subroutine INDATA ;

" !

Subroutine TRAN :

if

KXWRTT

Sample Hydrophone

Group 1

Amplitude Weight

Hydrophone Outputs

Sample Hydrophone

Group 2

Amplitude Weight

Hydrophone Outputs

KXREAD

1 r

Assemble All

Hydrophone Outputs

For Beamsteering

i f

Beamsteer Sector

1 r

KXWRn

Assemble All

Hydrophone Outputs

For Beamsteering

Beamsteer Sector

KXWRn

Write Beamformer

Output Data to File

Node 3

Sample Hydrophone

Group 3

Amplitude Weight

Hydrophone Outputs

Assemble All

Hydrophone Outputs

For Beamsteering

Beamsteer Sector

KXWRn

Figure 6. 1 Four processor Partition With Message Shuffle program.

36

TABLE VII: PROFILING DATA FOR EIGHT NODE PARTITION WITH MESSAGE
SHUFFLE

Node

Calculation

Time

(msec)

Node

Communication

Time

(msec)

Input/

Output

(msec)

System

Calls

(msec)

Idle

Time

(msec)

NodeO 20318.89 6087.46 0.00 0.00 7659.45

Node 1 17323.42 5649.29 0.00 0.00 11072.58

Node 2 17935.90 5754.61 0.00 0.00 10371.69

Node 3 22558.38 6080.17 0.00 0.00 5423.59

Node 4 24340.19 7054.94 0.00 0.00 2688.82

Node 5 19011.98 6777.81 0.00 0.00 8289.12

Node 6 28610.51 5452.54 0.00 0.00 9.69

Node 7 16140.80 7312.98 0.00 0.00 10599.94

Average 20318.89 6087.46 0.00 0.00 7659.45

37

TABLE VIII: PROFILING DATA FOR PARTITION WITH MESSAGE SHUFFLE

Number of

Processors

Calculation

Time

(msec)/

Percent Of
Total

Node

Communication

Time

(msec)/

Percent Of Total

Input/

Output

(msec)/

Percent

Of Total

System

Calls

(msec)/

Percent

Of Total

Idle

Time

(msec)/

Percent

Of Total

One
110513.47

98.34%

1857.54

1.65%

0.00

0%
0.00

0%
9.85

0.01%

Two
58144.48

95.25%

2201.00

3.61%

0.00

0%
0.00

0%
695.25

1.14%

Four
30150.05

86.08%

2292.27

6.54%

0.00

0%
0.00

0%
2585.36

7.38%

Six
21547.69

66.77%

4533.28

14.05%

0.00

0%
0.00

0%
6189.18

19.18%

Eight
20318.89

59.65%

6087.46

17.87%

0.00

0%
0.00

0%
7659.45

22.48%

TABLE IX: TOTAL PROCESSING TIME AND SPEEDUP FOR PARTITION WITH
MESSAGE SHUFFLE

Number of

Processors

Average Total

Processing Tune

(msec)

Speedup

One 112380.86 1.00

Two 61040.73 1.84

Four 35027.68 3.21

Six 32270.15 3.48

Eight 34065.79 3.30

38

Node Utilization

v 0.8

^0.6
a

| 0.4

0.2 -

-
ft

&.

££

NodeO Node 2 Node 4 Node 6

Processor Number

Calculation ED Communications

I/O ^ System calls

Idle

Figure 6.2 Node utilization for eight node Partition With Message Shuffle method.

39

120000

g 100000

H 80000 -

c

I 60000
o

3 40000
o
H

20000
2 4 6

Number Of Processors

Figure 6.3 Total processing time versus number of processors.

2 4 6

Number Of Processors

Figure 6.4 Speedup versus number of processors.

40

VII. HOST-NODE PARTITION WITH MESSAGE BROADCAST

The Host-Node Partition With Message Shuffle method performed satisfactorily in the

two, four, and six-processor parallel system trials. Speedup dipped slightly for the eight-

processor run. Host-Node Partition With Message Broadcast is a different method. Instead

of using direct point-to-point message passing routines to send the hydrophone data

between nodes, Partition With Message Broadcast uses a different communication

procedure. In Message Broadcast, the Express subroutine program KXBROD is used.

When a node is ready to send its hydrophone data, it broadcasts the data to all other nodes.

All of the receiving node programs block execution until they receive the message. This

message broadcasting paradigm significantly reduced processor idle time. Inter-node

communication time remained almost identical compared to direct communication. The net

result is that the Partition With Message Broadcast method improved speedup with all

configurations of parallel systems considered here.

The Message Broadcast method simulations were conducted with the same inputs

used for the previous partition methods. The host and node program structures are identical

to Partition With Message Shuffle with the exception of inter-node communications.

Figure 7.1 shows the call to KXBROD for each node to broadcast its hydrophone data to

the other nodes. Table X and Figure 7.2 demonstrate that idle time is dramatically reduced

using broadcast communications in an eight-node parallel system. The average idle time

was 1514.37 milliseconds for Message Broadcast. The Partition With Message Shuffle

method had an average idle time of 7659.45 milliseconds. The Partition With Message

Broadcast method had only 19.77% of the idle time that the Partition With Message Shuffle

method had in an eight-node parallel system.

Tables XI and XQ display the system measurements as the number of processors is

increased in a Partition With Message Broadcast. Figure 7.3 shows that total processing

time remained almost constant when six to eight processors were used but it decreased

41

significantly when one, four, and six processors were used. Figure 7.4 illustrates that

speedup consistently improved in the two, four, and six-processor cases. Speedup in the

eight-processor system did not improve as much as it did in the six-processor system. The

Host-Node Partition With Message Broadcast method was successful in demonstrating that

an improvement in inter-node communications is essential for efficient multi-processor

parallel systems.

42

NodeO

Sample Hydrophone

Group

Amplitude Weight

Hydrophone Outputs

1DFFT

KXBROD

Hydrophone

Outputs

KXBROD

1 f

Assemble All

Hydrophone Outputs

For Beamsteering

i f

Beamsteer Sector

1 r

KxwRrr

Host

Subroutine INDATA

ir

Subroutine TRAN

ir

KXWRTT

Sample Hydrophone

Group 1

Amplitude Weight

Hydrophone Outputs

1DFFT

I
KXBROD

Sample Hydrophone

Group 2

Amplitude Weight

Hydrophone Outputs

1DFFT

1
KXBROD

KXBROD

Assemble All

Hydrophone Outputs

For Beamsteering

Beamsteer Sector

KXWRIT

KXBROD

Assemble All

Hydrophone Outputs

For Beamsteering

Beamsteer Sector

Write Beamformer

Output Data to File

Node 3

Sample Hydrophone

Group 3

Amplitude Weight

Hydrophone Outputs

1DFFT

KXBROD

KXBROD

Assemble All

Hydrophone Outputs

For Beamsteering

Beamsteer Sector

KXWRIT

Figure 7.1 Four processor Partition With Message Broadcast program.

43

TABLE X: PROFILING DATA FOR EIGHT NODE PARTITION WITH MESSAGE
BROADCAST

Node

Calculation

Time

(msec)

Node

Communication

Time

(msec)

Input/

Output

(msec)

System

Calls

(msec)

Idle

Time

(msec)

NodeO 18176.51 5171.22 0.00 0.00 1665.41

Node 1 17883.62 5285.72 0.00 0.00 1830.20

Node 2 18909.51 5290.17 0.00 0.00 801.34

Node 3 17650.70 5359.18 0.00 0.00 2016.23

Node 4 17935.77 5236.42 0.00 0.00 1856.73

Node 5 19515.40 5493.34 0.00 0.00 27.59

Node 6 17963.37 5326.50 0.00 0.00 1734.24

Node 7 25033.89 18098.78 0.00 0.00 2180.21

Average 18266.71 5239.68 0.00 0.00 1514.37

44

TABLE XI: PROFILING DATA FOR HOST-NODE PARTITION WITH MESSAGE
BROADCAST

Number of

Processors

Calculation

Time

(msec)/

Percent Of
Total

Node

Communication

Time

(msec)/

Percent Of Total

Input/

Output

(msec)/

Percent

Of Total

System

Calls

(msec)/

Percent

Of Total

Idle

Time

(msec)/

Percent

Of Total

One
110792.09

98.29%

1910.61

1.70

0.00

0%
0.00

0%
10.57

0.01%

Two
56569.40

94.08%

1578.61

2.63%

0.00

0%
0.00

0%
1980.55

3.29%

Four
31981.52

83.74%

3812.97

9.98%

0.00

0%
0.00

0%
2399.05

6.28%

Six
20256.19

78.79%

4168.62

16.22

0.00

0%
0.00

0%
1282.57

4.99%

Eight
18232.96

73.01%

5239.68

20.94%

0.00

0%
0.00

0%
1514.37

6.05%

TABLE XH: TOTAL PROCESSING TIME AND SPEEDUP FOR HOST-NODE
PARTITION WITH MESSAGE BROADCAST

Number of

Processors

Average Total

Processing Time

(msec)

Speedup

One 112714.26 1.00

Two 60128.55 1.87

Four 38193.54 2.95

Six 25707.38 4.38

Eight 25020.76 4.50

45

Node Utilization

1

73 0.8 f

^ 0.6
u

-

1 0.4 4

£ 0.2 4

5

^
NodeO Node 2 Node 4 Node 6

Processor Number

^ Calculation ED Communications

m i/o f^ System calls

Sidle

Figure 7.2 Node utilization for eight node Partition With Message Broadcast method.

46

120000

100000

1>

H 80000
oo
c
to
GO

8
60000

3
o

40000

20000
2 4 6

Number Of Processors

Figure 7.3 Total processing time versus number of processors.

2 4 6

Number Of Processors

Figure 7.4 Speedup versus number of processors.

47

VOL HOST-NODE FREQUENCY PARTITION WITH MESSAGE SHUFFLE

Host-Node Frequency Partition With Message Shuffle is a new partitioning method.

It significantly reduces the inter-processor communications burden in a parallel computer.

The net result is that each node has less communication load and therefore less idle time

than in any of the previous partitioning schemes. For this reason, Frequency Partition With

Message Shuffle had better speedup than any of the previous partitioning schemes.

Figure 8.1 is a diagram of the beamformer program structure. Consider the

hydrophone outputs in the frequency domain as a matrix shown in Figure 8.2. In the

Frequency Partition methodology, each node program performs beamforming calculations

on its own assigned group of frequency bins.

Amplitude

Weights

Beamsteering

Weights

A2

>
X2(t) i

LM

[>—^-*<g>

—

»|~ffT

®—

»

FFT

£^M^ct_4W

wM(f,^)

xM(0 |

Beamformer
Output

*0 Y(ff¥)

Figure 8.1 Diagram Of Beamformer Algorithm.

48

Figure 8.2 shows the frequency bins processed by Nodes 0, 1, and 7 in an eight-node

parallel system. For a 256 point FFT, only the positive frequency components consisting of

128 points are used for steering the beam. Therefore, to evenly distribute the computational

load, each node processes a section of 16 frequency bins from each hydrophone output. The

benefit of this partitioning method is a reduction in the amount of data transmitted between

nodes before steering. Figure 8.3 shows the overall host and node program structures for a

four node parallel system.

: Node

XiCfi) - Ei(fi6)

•

•

•

Il2(fl)..X12(f16)

X 13(fi)..X 13 (f16)

•

•

•

1
X24(fi) .. X24(f"l6)

•

•

•

jfc<f1)..X85(fi6>

•

•

•

i X%(fi) •• X%(fi6)

Node 1

Xi(fn) •• Xi(f32)

Xl2(f17)--2£i2(f32)

X 13 (f17) .. X 13 (f32)

X24(f17) •• X24(f32)

X35 (f17) .. Xs5(f32)

K%(fn) X96(f32)

• • •

• • •

• • •

• • •

• • •

• • •

Node 7
i

Xitfin) • -Xi(fi28)
i

^I2(f113) •Xi2(fi28):

^I3(f113) • -^13(f128)i

^24(f113) -^24(f128)i

X85 (f113) .. X85(f128)

^96(f113) • -^%(fi28):

Figure 8.2 Matrix of hydrophone data partitioned by frequency bins.

49

NodeO

KXREAD

Create Source

Signals

Sample Hydrophone

Group

Amplitude Weight

Hydrophone Outputs

|
1DFFT

1
KXWRIT

Frequency
Data

KXREAD

Assemble Sector Of
Frequencies For

Beamsteering

Beamsteer In All
Directions

KXWRIT

KXREAD

Create Source

Signals

Sample Hydrophone

Group 1

Amplitude Weight

Hydrophone Outputs

|
1DFFT

I
KXWRIT

KXREAD

Create Source

Signals

Sample Hydrophone

Group 2

Amplitude Weight

Hydrophone Outputs

1DFFT

1
KXWRIT

KXREAD

i r

Assemble Sector Of
Frequencies For
Beamsteering

i r

Beamsteer In All
Directions

i f

KXWRIT

KXREAD

1 '

Assemble Sector Of
Frequencies For

Beamsteering

i r

Beamsteer In All
Directions

i r

KXWRIT

Write Beamformer

Output Data to File

Node 3

KXREAD

Create Source

Signals

Sample Hydrophone

Group 3

Amplitude Weight

Hydrophone Outputs

1DFFT

KXWRIT

KXREAD

V
Assemble Sector Of

Frequencies For

Beamsteering

i r

Beamsteer In All
Directions

1 r

KxwRrr

Figure 8.3 Four processor Frequency Partition With Message Shuffle program.

50

TABLE XIII: PROFILING DATA FOR EIGHT NODE FREQUENCY PARTITION
WITH MESSAGE SHUFFLE

Node

Calculation

Time

(msec)

Node

Communication

Time

(msec)

Input/

Output

(msec)

System

Calls

(msec)

Idle

Time

(msec)

NodeO 10553.71 1315.81 0.00 0.00 1569.01

Node 1 11143.35 1366.78 0.00 0.00 927.28

Node 2 11177.26 1393.18 0.00 0.00 886.89

Node 3 12370.29 1064.03 0.00 0.00 23.03

Node 4 11232.63 1563.71 0.00 0.00 649.98

Node 5 11261.46 1554.88 0.00 0.00 622.80

Node 6 11239.10 1721.20 0.00 0.00 489.76

Node 7 10195.78 1636.01 0.00 0.00 1621.73

Average 11146.70 1451.95 0.00 0.00 847.93

The Frequency Partition simulation runs were conducted using the same inputs

discussed in the previous chapters. Table XHI and Figure 8.4 show the node utilization for

an eight-node parallel beamformer. Tables XTV and XV illustrate that increasing the

number of processors resulted in speedup. Figures 8.5 and 8.6 show the plots of total

processing time and speedup for the different runs. The Frequency Partition method greatly

reduced the node communication and idle time compared to the previous partition methods.

This is the main reason for the greater speedup.

51

TABLE XIV: PROFILING DATA FOR FREQUENCY PARTITION WITH MESSAGE
SHUFFLE

Number of

Processors

Calculation

Time

(msec)/

Percent Of
Total

Node

Communication

Time

(msec)/

Percent Of Total

Input/

Output

(msec)/

Percent

Of Total

System

Calls

(msec)/

Percent

Of Total

Idle

Time

(msec)/

Percent

Of Total

One
81839.53

99.36%

508.99

0.62%

0.00

0%
0.00

0%
16.76

0.02%

Two
40313.36

94.38%

1711.60

4.01%

0.00

0%
0.00

0%
688.95

1.61%

Four
24805.19

90.41%

1681.11

6.13%

0.00

0%
0.00

0%
948.53

3.46%

Six
14660.10

87.38%

1212.08

7.22%

0.00

0%
0.00

0%
905.34

5.40%

Eight
11146.70

82.90%

1451.95

10.80%

0.00

0%
0.00

0%
847.93

6.30%

TABLE XV: TOTAL PROCESSING TIME AND SPEEDUP FOR FREQUENCY
PARTITION WITH MESSAGE SHUFFLE

Number of

Processors

Average Total

Processing Time

(msec)

Speedup

One 82365.28 1.00

Two 42713.91 1.93

Four 27434.83 3.00

Six 16777.52 4.91

Eight 13446.58 6.13

52

Node Utilization

in

0.8 -

2 0.6 -

a
o

0.4 -

0.2 -

sN.

NodeO Node 2 Node 4 Node 6

Processor Number

^
_4-

Calculation

I/O

Idle

Communications

System calls

Figure 8.4 Node utilization for eight node Frequency Partition With Message Shuffle.

53

90000

£ 80000 -

S 70000 -

,5 60000 -

= 50000 ^

§ 40000

£ 30000

H 20000 i

10000
2 4 6

Number Of Processors

Figure 8.5 Total processing time versus number of processors.

2 4 6

Number Of Processors

Figure 8.6 Speedup versus number of processors.

54

IX. TIMING MEASUREMENTS

The performance of a parallel computer system depends on both the computation

speed and the communication latencies. Both must be considered when mapping a

sequential program to a parallel program. A parallel program may require longer execution

time than the sequential program because of slow inter-processor communications. Express

provides an event profiling tool called ETOOL to assist in performance analysis [Ref. 4:p.

218]. The programmer places ETOOL markers in a node program. Upon program

completion, ETOOL writes a data file listing the time when each marker was encountered

during execution. To aid in future development of mapping digital signal processing

algorithms, the calculation and communication time of a node program were determined

experimentally. All measurements were taken during low network usage times at night.

A. INTER-PROCESSOR COMMUNICATIONS

Table XVI and Figure 9.1 illustrate the inter-processor communication time for

transmitting EFT data between processors. The largest FFT length was 2048 points because

of the message buffer size limit. The largest number of bytes in one message was

experimentally found to be 56,000 bytes. If more than 56,000 bytes are sent in a message,

the communications call halts since there is not enough buffer space to store the message.

Figure 9.1 shows a plot of the average communication time. The high and low bars in

Fig. 9.1 show the confidence interval. The mean, plus and minus one standard deviation,

determines the 68.27% confidence interval [Ref. 8:p. 195]. The data array being

transmitted is of the double precision complex type. For comparison, a single integer was

sent via the same message function. The average communication time for the integer was

7.79 msec.

A mathematical prediction model was constructed to interpolate and extrapolate

average communication times. A second-order polynomial can fit the communication time

55

data with the least error [Ref. 9:p. 188]. The best fitting polynomial equation for the inter-

processor communication time is given by

Inter-Processor Communication Time (msec) =

1.9026xl0"5 (FFT Length)
2 + 2.6509X10" 1 (FFT Length) + 92.56 (9.1)

Table XVII compares the actual measured and the interpolated communication time.

Figure 9.2 shows the plots of both data sets. The predicted data follow the general shape of

the measured data curve. Figure 9.3 shows a plot of the projected inter-processor

communication times. These values are presented with the assumption that the processor

has enough buffer memory so that the message will not cause blockage.

B. FFT COMPUTATION TIME

The FFT computation time measurements were made in the same program using

ETOOL. As with the communication measurement trials, the largest FFT point size was

2048. Table XVIII presents the average computation time along with the standard

deviation. The only limitation that may affect the processor FFT computation time is the

amount of random access memory (RAM). If there is not enough RAM, part of the data is

temporarily written to disk. For all trials, the processor had a total of 16 megabytes of

RAM.

Figure 9.4 is a graph of the mean and standard deviation of the FFT computation time.

The computation time standard deviations were considerably less than the communication

time standard deviations. A polynomial equation was found to fit the FFT computation time

data quite well. A second-order equation that best fits the actual results is given by

FFT Computation Time (msec) =

3.5544xl0-5(FFT Length)
2 + 5.027x1c 1(FFT Length) + 232.51 (9 -2)

56

Table XIX compares the actual computation time with the predicted time. Figure 9.5

shows a graph of both data sets. The percent error between the actual and predicted data is

in the single digit range. Figure 9.6 shows a plot of predicted computation time with FFT

lengths greater than 2048 points. This projection is given with the assumption that the

processor has enough RAM to perform the calculations and does not need to temporarily

offload data to disk.

In this chapter attempts were made to construct quadratic models that can predict the

FFT computational time and the Ethernet communication time. Future work using these

models may help to predict the scalability of parallel systems.

57

Communication Time

o

E

E

800

600

400

200

64 128 256 512 1024 2048
FFT Length

Figure 9. 1 Parallel computer network communication time for FFT messages.

TABLE XVI: PARALLEL COMPUTER SYSTEM INTER-PROCESSOR
COMMUNICATION TIME

FFT Length
Average Time

(msec)

Standard Deviation

(msec)

64 115.57 47.91

128 105.64 64.49

256 198.69 59.35

512 200.38 52.19

1024 396.69 84.29

2048 713.66 79.88

58

Actual And Modeled Communication Time

800

256 512
FFT Size

2048

-X- Actual Average Communication Time -»- Modeled Communication Time

Figure 9.2 Actual and modeled communication time.

TABLE XVII: MODELED INTER-PROCESSOR COMMUNICATION TIME

FFT Length
Actual Average

Time (msec)

Modeled

Average Time

(msec)

Percent

Error

64 115.57 109.60 5.16%

128 105.64 126.81 20.04%

256 198.69 161.67 18.63%

512 200.38 233.28 16.42%

1024 396.69 383.97 3.21%

2048 713.66 715.28 0.23%

59

TABLE XVH: MODELED INTER-PROCESSOR COMMUNICATION TIME

FFT Length
Actual Average

Time (msec)

Modeled

Average Time

(msec)

Percent

Error

4096 - 1497.60 -

8192 - 3541.06 -

16384 - 9543.19 -

10000

Projected Communication Time

1024

FFT Size

16384

Figure 9.3 Projected communication time for inter-processor communications.

60

Computation Time

1500
1400
1300
1200

-5*1100

$ 1000
E 900
V 800
E 700
H 600

500
400
300
200

256 512
FFT Size

Figure 9.4 Single processor computation time for FFT messages.

TABLE XVIII: PROCESSOR FFT COMPUTATION TIME

FFT Length
Average Time

(msec)

Standard Deviation

(msec)

64 270.37 3.68

128 299.74 4.08

256 361.97 24.55

512 483.49 5.80

1024 795.81 4.23

2048 1409.30 69.99

61

Actual And Modeled Computation Time

1600

256 512
FFT Size

1024 2048

-X1 Actual Average Computational Time -"- Modeled Computational Time

Figure 9.5 Actual and projected processor FFT computation time.

TABLE XIX: MODELED PROCESSOR FFT COMPUTATION TIME

FFT Length
Actual Average

Time (msec)

Modeled

Average Time

(msec)

Percent

Error

64 270.37 264.83 2.05%

128 299.74 297.44 0.77%

256 361.97 363.53 0.43%

512 483.49 499.21 3.25%

1024 795.81 784.55 1.41%

2048 1409.30 1411.12 0.13%

62

TABLE XIX: MODELED PROCESSOR FFT COMPUTATION TIME

FFT Length
Actual Average

Time (msec)

Modeled

Average Time

(msec)

Percent

Error

4096 - 2887.97 -

8192 - 6735.96 -

16384 - 18010.07 -

20000

Projected Computation Time

1024

FFT Size

16384

Figure 9.6 Projected processor FFT computation time.

63

X. CONCLUSION

This thesis research compared two parallel programming methodologies: Loosely

Synchronous Communication Partition and Host-Node Partition. Loosely Synchronous

programming is the easiest method for converting sequential programs to parallel

programs. However, the ease in programming is traded off for lower performance as the

number of processors is increased. As shown in Figures 8.1 and 8.2, the Loosely

Synchronous Communication Method For Partition experienced longer processing time

and a decrease in speedup for more than four processors. With more than four processors,

processing time increases because each node makes frequent system call requests to the

host program.

Host-Node Programming Methodology offers the best programming paradigm to

achieve an increase in speedup as the number of processors are increased. Several partitions

were implemented to find the mapping that had the best speedup in the parallel workstation

systems. The parallel programming process can best be described as repetitiously trying

different partitioning and mapping designs.

For the beamformer application considered in this thesis, two key concepts aided

speedup. The first was using broadcast communications in place of point-to-point

communications. Broadcasting common data greatly reduced node program idle time

resulting in increased speedup. The second concept was to reduce the amount of data

transmitted in the network. The success of the Frequency Partition method was due to

transmitting less hydrophone data from each node compared to the amount of data

transmitted using the other partition methods.

This thesis research can be continued by improving communication and computer

capabilities. Since the Ethernet facilitated the inter-processor communications between

workstations, a new communications medium can be used. Inter-processor communication

time using fiber optic cable can be explored. Besides experimenting with inter-workstation

64

communications, the beamformer simulation can be run on a supercomputer. A

supercomputer offers more nodes and another method of inter-processor communications.

Pipelining can be used to increase speedup. Programming with more than eight nodes and

using piplelining allow new partitioning schemes to be developed.

65

Total Processing Time Vs. Number Of Processors

-000

SO"

«

B

£

!0000

Loosely Synchronous

Partition With Message Shuffle

Frequency Partition

Number Of Processors

Partition Without Message Shuffle

Partition With Message Broadcast

Figure 10.1 Total processing time vs. number of processors for all partition methods.

66

Speedup Vs. Number Of Processors

2 4 6

Number Of Processors

— Loosely Synchronous -&- Partition Without Message Shuffle

~e~
Partition With Message Shuffle ~^~ Partition With Message Broadcast

-E- Frequency Partition

Figure 10.2 Speedup vs. number of processors for all partition methods.

67

LIST OF REFERENCES

1. Bryan, J., and Pountain, D., "All Systems Go," Byte, v. 17, August 1992.

2. Pillai, S. U., Array Signal Processing, Springer-Verlag Inc., New York, NY., 1989.

3. Ziomek, L. J., "Fundamentals Of Acoustic Field Theory And Space-Time Signal

Processing," Aksen Associates, Homewood, IL., manuscript in progress.

4. Parasoft Corporation, Pasadena, CA., Express Fortran User's Guide, 1990.

5. Parasoft Corporation, Pasadena, CA., Express Fortran Reference Guide, 1990.

6. Flower, J. and Kolawa, A., "A Packet History Of Message Passing Systems," Parasoft

Corporation, Pasadena, CA.

7. Hennessy, J. L., and Patterson, D. A., Computer Architecture: A Qualitative Approach,

pp. 8-9, Morgan Kaufmann Publishers, Inc., San Mateo, CA., 1990.

8. Spiegel, M. R., Theory and Problems Of Probability And Statistics, McGraw-Hill

Publishing Company, New York, NY., 1975.

9. Giordano, F.R., and Weir, M.D., A First Course In Mathematical Modeling, Brooks/

Cole Publishing Company, Belmont, CA., 1985.

68

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 52

Naval Postgraduate School

Monterey, CA 93943-5002

3. Chairman, Code EC
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

4. Professor C. H. Lee, Code EC/Le

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

5. Professor L. J. Ziomek, Code EC/Zm
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

6. Chief Of Naval Research

Ballston Tower 1

Attn: Ms. Elizabeth E. Wald
Code 227

800 N. Quincy St.

Arlington, VA 22217-5660

7. Chief Of Naval Research

Ballston Tower 1

Attn: CDR Grace L. Thompson
Code 227A
800 N. Quincy St.

Arlington, VA 22217-5660

69

8. Mr. Steven L. Howell

Naval Surface Warfare Center

Dahlgren Division, White Oak Detachment

Silver Spring, MD 20903-5000

9. LT Daniel T. Sullivan, USN
219 Sherman Ave.

Montgomery, IL 60538

70

Thesis
S8585
c.l

Sullivan
Computer simulation

studies of two-dimensional
beamforming for linear
arrays using a parallel
computer system.

Thesis
S8585
c.l

Sullivan
Computer simulation

studies of two-dimensional

beamforming for linear

arrays using a parallel

computer system.

